Курс Математика для Data Science

Тип курса: Онлайн

Уровень: Средний Начальный

Срок обучения: 8 недель

Тестирование:

Сертификат об окончании: Да

Язык: Русский

Описание и программа курса

Сделайте своё резюме привлекательным для крупных Data Science-based компаний

Каждый, кто начинает свой путь в Data Science, стремится когда-нибудь дорасти до уровня Senior. Но требования к специалистам такого уровня, особенно в крупных компаниях, очень высоки. Большинство соискателей не могут пройти собеседование.

Чтобы уверенно решать не типовые задачи и создавать собственные архитектуры, мало владеть основными методами машинного обучения и нейронных сетей: важно понимать законы математики и статистики у них "под капотом".

Существующие курсы по этим темам рассказываются сухим и академичным языком и не нацелены на практику, а на русском языке таких курсов еще меньше. Именно поэтому мы решили создать первый специализированный курс по математике и статистике для Data Science!

Преимущества курса

  • Мы рассказываем о математике и статистике понятно и доходчиво. Наша цель — не сделать из вас гения фундаментальной математики, а заложить фундамент для вашего роста в Data Science. С остальным вы разберетесь сами, наша задача — помочь вам втянуться.
  • Курс содержит много практики, которая не ограничивается решением классических уравнений и абстрактных заданий. Мы показываем, как знание математики и статистики работает в решении реальных жизненных задач в области анализа данных, прогнозирования и оптимизации.
  • Мы рассматриваем применение математических и статистических закономерностей в машинном обучении и нейронных сетях, чтобы вы в дальнейшем могли работать не только с типовыми моделями и архитектурами.
  • У нас есть не только сообщество единомышленников, с которыми вы можете обсудить затруднения и поделиться наболевшим, но и поддержка ментора, который поможет выйти из тупика. Вы не останетесь с курсом один на один.

Программа курса

Часть 1: Линейная алгебра

  • Изучаем вектора и виды матриц
  • Учимся проводить операции над матрицами
  • Определяем линейную зависимость с помощью матриц
  • Изучаем обратные, вырожденные и невырожденные матрицы
  • Изучаем системы линейных уравнений, собственные и комплексные числа
  • Осваиваем матричное и сингулярное разложение
  • Решаем задачи линейной зависимости с помощью матриц
  • Оптимизируем с помощью метода главных компонент
  • Закрепляем математические основы линейной регрессии

Часть 2: Основы матанализа

  • Изучаем функции одной и многих переменных и производные
  • Осваиваем понятие градиента и градиентного спуска
  • Тренируемся в задачах оптимизации
  • Изучаем метод множителей Лагранжа, метод Ньютона и имитацию отжига
  • Решаем задачи предсказания и поиска выигрышной стратегии с помощью производных и численных методов оптимизации
  • Закрепляем математические основы градиентного спуска и имитации отжига

Часть 3: Основы теории вероятности и статистики

  • Изучаем общие понятия описательной и математической статистики
  • Осваиваем комбинаторику
  • Изучаем основные типы распределений и корреляции
  • Разбираемся в теореме Байеса
  • Изучаем наивный байесовский классификатор
  • Решаем задачи комбинаторики, валидности и прогнозирования методами статистики и теорвера
  • Закрепляем математические основы классификации и логистической регрессии

Часть 4: Временные ряды и прочие математические методы

  • Знакомимся с анализом временных рядов
  • Осваиваем более сложные типы регрессий
  • Прогнозируем бюджет с помощью временных рядов
  • Закрепляем математические основы классических моделей машинного обучения

Фотографии