Контроль качества минеральной ваты Izover на заводе компании «Сен-Гобен»


Следить за качеством продукции с помощью визуального контроля невыгодно. Особенно когда речь идет о крупном конвейерном производстве. Человек может просто проморгать дефект. 

В результате — издержки из-за рекламации. На заводе было решено исключить эту проблему с помощью машинного зрения и нейросетей на основе цифровой платформы ML Sense.

До того, как производитель Isover применил решение ML Sense, специалисту отдела контроля приходилось визуально отслеживать дефекты на поверхности минерального ковра.


Что мы сделали для решения задачи:

Обучили систему ML Sense на основе нейросетей и машинного зрения.

Для этого собрали датасет из фотографий, где каждый вид дефектов размечен и классифицирован. При этом пришлось учитывать, что дефекты очень похожи внешне, но имеют разную природу происхождения, неочевидную для неспециалиста. Чтобы обучить нейросети, команда ML Sense разобралась в тонкостях производства, по сути став специалистам ОТК по минеральной вате.

В конечном итоге мы настроили точность распознавания платформой до 99%. Подключили аналитику, систему оповещения. Адаптировали интерфейс под задачи заказчика.

Спроектировали установку программно-аппаратного комплекса, смонтировали оборудование на производстве.

Подобрали видеокамеры, осветительные приборы для более точного распознавания дефектов. Установили их на мачты крепления. Особенностью такого крепления стало то, что металлические кожухи для оборудования были сконструированы по нашей собственной запатентованной схеме. Это важно, чтобы видеокамеры были защищены от производственной пыли и внешнего воздействия.

Разработали уникальное маркирующее устройство с системой управления.

Как только машинное зрение обнаруживает дефект, она подает сигнал на блок управления прибора. В этот момент активируются пневмоотсекатели, которые в свою очередь подают давление воздуха на краскораспылители. В зависимости от расположения дефекта на ковре, активируется тот или иной маркиратор. Система подает сигнал — и минераловатный ковер маркируется.

Запустили систему в эксплуатацию, обучили персонал.

Во время работы над проектом команда инженеров Nord Clan несколько раз выезжала на производство, чтобы протестировать работу системы. И только после того, как обе стороны убедились в том, что система работает стабильно и без сбоев, мы сдали заказчику все оборудование в эксплуатацию, обучили персонал, подписали акты приемки — передачи.

Что изменилось на заводе:

- Заменили визуальный контроль на машинное зрение. Руководству больше не нужно надеяться только на внимательность и хорошее зрение оператора отдела качества.

- Внедрили отечественное ПО, а значит решили вопрос импортозамещения на промышленном предприятии. ML Sense — результат работы российской компании. Входит в реестр отечественного ПО.

- Повысили экономический эффект. Если раньше завод нес финансовые потери из-за возврата некачественной минваты, то теперь эти затраты свелись к нулю.


Контроль качества минеральной ваты Izover на заводе компании «Сен-Гобен»

Сделано в Россия

Design

Tech

Usability

Creativity

Content

Тип проекта: Программное обеспечение
Страна: Россия
Категория: Производство
Стиль: Clean
Цвет: Красный